
Condor: Cycle-Scavenging Genetic Algorithms

JavaGenes and Condor: Cycle-Scavenging Genetic Algorithms

Al Globus, Veridian MRJ Technology Solutions, Inc. at NASA Ames Research Center
Eric Langhirt, Sterling Software, Inc. at NASA Ames Research Center
Miron Livny, University of Wisconsin
Ravishankar Ramamurthy, University of Wisconsin
Marvin Solomon, University of Wisconsin
Steve Traugott, Sterling Software, Inc. at NASA Ames Research Center

Abstract

A genetic algorithm code, JavaGenes, was written in Java and used to evolve
pharmaceutical drug molecules and digital circuits. JavaGenes was run under the
Condor cycle-scavenging batch system managing 100-170 desktop, desk-side, and
rack-mounted SGI workstations. Genetic algorithms mimic biological evolution by
evolving solutions to problems using crossover and mutation. While most genetic
algorithms evolve strings or trees, JavaGenes evolves graphs representing (currently)
molecules and circuits. Java was chosen as the implementation language because the
genetic algorithm requires random splitting and recombining of graphs, a complex data
structure manipulation with ample opportunities for memory leaks, loose pointers, out-of-
bound indices, and other hard to find bugs. Java garbage-collection memory
management, lack of pointer arithmetic, and array-bounds index checking reduces the
frequency of these bugs, substantially reducing development time. While a run-time
performance penalty must be paid, the only unacceptable performance we encountered
was using standard Java serialization to checkpoint and restart the code. This was fixed
by a two-day implementation of custom checkpointing. JavaGenes is minimally
integrated with Condor; in other words, JavaGenes must do its own checkpointing and I/
O redirection. A prototype Java-aware version of Condor was developed using standard
Java serialization for checkpointing. For the prototype to be useful, standard Java
serialization must be significantly optimized. JavaGenes is approximately 8700 lines of
code and a few thousand JavaGenes jobs have been run. Most jobs ran for a few days.
Results include proof that genetic algorithms can evolve directed and undirected
graphs, development of a novel crossover operator for graphs, a paper in the journal
Nanotechnology [Globus, et al. 1999], and another paper in preparation.

Introduction

This paper is a case study of running genetic algorithms written in Java under Condor.
To understand the experience and results, it is necessary to have some understanding
of both genetic algorithms and Condor. Since this paper is written for the Java Grande
2000 conference, we expect readers to understand the Java programming language
and run-time environment.

Genetic Algorithms

Genetic algorithms seek to mimic natural evolution's ability to produce highly functional
objects. Natural evolution produces organisms. Genetic algorithms produce sets of
parameters, programs, molecular designs, and many other structures. Genetic

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-006.html (1 of 13)10/22/2004 2:14:39 AM

http://www.nas.nasa.gov/Main/alpha.html
http://www.nas.nasa.gov/Main/staffdir.html
http://www.nas.nasa.gov/Main/search.html
http://www.nas.nasa.gov/index.html
http://www.nas.nasa.gov/About/aboutnas.html
http://www.nas.nasa.gov/Research/research.html
http://www.nas.nasa.gov/Research/Tasks/tasks.html
http://www.nas.nasa.gov/Research/Reports/reports.html
http://www.nas.nasa.gov/Research/Reports/searchreports.html
http://www.nas.nasa.gov/Research/Reports/techreports.html
http://www.nas.nasa.gov/Research/Reports/grantreports.html
http://www.nas.nasa.gov/Research/Reports/confpapers.html
http://www.nas.nasa.gov/Research/Software/software.html
http://www.nas.nasa.gov/Research/Datasets/datasets.html
http://www.nas.nasa.gov/User/userservices.html
http://www.nas.nasa.gov/Main/contact.html
http://www.nas.nasa.gov/Main/feedbackform.html
http://www.nas.nasa.gov/Main/sitemap.html
http://www.nas.nasa.gov/Main/help.html

Condor: Cycle-Scavenging Genetic Algorithms

algorithms usually solve problems by:

1. Randomly generating a population of individual potential solutons
2. For each new generation, repeatedly selecting parent individuals at random with

a bias towards better individuals and applying transmission operators to produce
children. Transmission operators include:

1. Crossover: each of two parents is divided into two parts and one part from
each parent is combined into a child.

2. Mutation: a single "parent" is randomly modified to generate a child.
3. Reproduction: a single "parent" is copied into the new generation.

3. Continuing until an acceptable solution is found or exhaustion sets in.

A key issue is what constitutes "better individuals." This is determined by a "fitness
function." The fitness function takes individuals (strings, trees, or graphs) as input and
returns a number representing the fitness of that individual.

Genetic algorithms differ in their representation of solutions. Bit string representations
were used in the first genetic algorithms [Holland 1975], but arrays of floating point
numbers, special symbols that generate circuits [Lohn and Colombano 1998], robot
commands [Xiao, et al. 1997], and many other symbols may be found in the literature.
Strings may be of fixed or variable length. Trees can also be evolved [Koza 1992]. This
is usually called genetic programming, because trees are particularly useful for
representing computer programs. Many molecules contain cycles, which chemists call
rings, and strings and trees don't contain cycles. Therefore, we took the unusual
approach of evolving graphs. Graphs are a set of vertices (for example, atoms) and a
set of edges (for example, bonds), each of which connects two vertices. In this paper,
the term graph does not refer to a two dimensional image used for data presentation.
Figure 1 depicts crossover using strings, trees and graphs.

Figure 1: Crossover

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-006.html (2 of 13)10/22/2004 2:14:39 AM

Condor: Cycle-Scavenging Genetic Algorithms

Crossover can be applied to strings, trees, and
graphs. Note that only graph crossover requires
multiple break points and that recombination must
work on fragments with different numbers of
broken edges. Particularly with large multi-ring
molecules, these complex data structure
manipulations are more error prone in C/C++/
FORTRAN than in Java.

Evolving graphs involves randomly splitting arbitrary graphs into two fragments and
then combining fragments. Splitting a complex graph, such as morphine (figure 2)
involves data structure manipulations that can easily result in various bugs. Java was
chosen as the implementation language to minimize these problems.

Figure 2: Morphine

JavaGenes has been used for pharmaceutical drug and digital circuit design. One
approach to drug design is to find molecules similar to good drugs. Ideally, a candidate
replacement drug is sufficiently similar to have the same beneficial effect, but is different
enough to avoid negative side effects. To use JavaGenes for similarity-based drug
discovery we need a good similarity measure that can score any molecule. [Carhart, et
al. 1985] defined such a similarity measure, all-atom-pairs-shortest-path, and searched
a large database for molecules similar to diazepam. We use a closely related similarity
technique to evolve a population of molecules towards a target drug molecule.

For an excellent review of genetic algorithms and related techniques as of Spring 1997,
see [Baeck 1997].

Condor

Genetic algorithms have the fortunate property of being embarrassingly parallel,
because fitness function evaluation is usually the most time-consuming step in the
genetic algorithm, and there is no dependency between fitness function evaluations.
Not only can many fitness function evaluations be conducted in parallel, but since
genetic algorithms are statistical, it is usually necessary to make many runs to support a
hypothesis. In our work, we usually run 31 jobs with the same input parameters, each
job differing only in the random number seed. This provides completely trivial 31 way
parallelism. Furthermore, we are usually running several experiments at the same time.
Thus, it is not uncommon for our project to run 100-200 jobs simultaneously. It's also
quite easy to implement parallel fitness function evaluation within a single job, although

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-006.html (3 of 13)10/22/2004 2:14:39 AM

Condor: Cycle-Scavenging Genetic Algorithms

we haven't found that to be necessary yet.

Embarrassingly parallel programs are a natural match for Condor [Litzkow, et al. 1988].
Condor is a software system that creates a High Throughput Computing [Livny and
Raman 1999] environment by effectively harnessing the power of a cluster of UNIX
workstations on a network. Although Condor can manage a dedicated cluster of
workstations, a key appeal of Condor is its ability to effectively harness non-dedicated,
preexisting resources in a distributed ownership setting such as machines sitting on
people's desks in offices and labs. We ran JavaGenes on the NAS Condor pool. NAS is
the primary NASA supercomputer center [NAS]. Approximately 200 workstations,
purchased and used for software development, visualization, email, document
preparation, etc., are available for batch processing during idle times. The Condor
daemons watch these 200 workstations. When a workstation has been idle for 2 hours,
a job from the batch queue is assigned to the workstation and will run until the
workstation detects a keystroke, mouse motion, or relatively high non-Condor CPU
usage. At that point, the job will be removed from the workstation and placed back on
the batch queue. As mentioned before, it's not uncommon to have a few hundred
JavaGenes jobs in the queue.

Because a JavaGenes job running under Condor may be vacated (removed from the
workstation) at any time, the job must save state (checkpoint) periodically. Condor
provides a generic checkpoint/restart facility, but for reasons discussed below, we could
not use this facility for JavaGenes. Checkpointing was initially implemented using
standard Java serialization. Conceptually, this is relatively simple since the state of a
genetic algorithm is simply the current population. However, standard Java serialization
turned out to be a serious, but fixable, performance problem, as others have discovered
[Wims and Xu 1999]. See the section below on serialization performance.

Approach

JavaGenes was written in 100% pure Java, version 1.1. There were approximately
8670 lines of source, not including the graph layout code (Jiggle) provided by Daniel
Tunkelang [Tunkelang 1998]. The graph layout code was used to arrange graph
vertices in three dimensions for viewing. We will now discuss some of the objects
implemented in JavaGenes.

Objects

The nouns used to describe genetic algorithms all became classes, including the
following:

● Population -- an array of Individuals.

● Individual -- an Evolvable and its fitness.

● Evolvable (nonstandard terminology) -- a data structure capable of being evolved
by ChildMaker objects. Currently, only Graph plus subclasses Molecule and
DigitalLogicGraph are implemented, but plans for arrays and trees exist.

● FitnessFunction -- these objects have a 'double evaluate(Evolvable)' method that
implements the desired fitness function. General purpose FitnessFunction

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-006.html (4 of 13)10/22/2004 2:14:39 AM

http://www.cs.wisc.edu/condor
http://www.nas.nasa.gov/Groups/Condor/

Condor: Cycle-Scavenging Genetic Algorithms

subclasses included weighted sum (of other FitnessFunctions) and MultiplyBy.

● Breeder (nonstandard terminology) -- a class with a 'Population breed
(Population)' method that evolves one population into another.

● ChildMaker (nonstandard terminology) -- these objects tell a Breeder how many
parents they want (two for crossover, one for mutation), then take an array of
parents and produce an array of children.

Another set of classes are responsible for creating, manipulating, and managing
graphs:

● Graph, along with subclasses Molecule and DigitalLogicGraph.

● Vertex, along with subclasses Atom, DigitalInput, DigitalOutput, and
DigitalDevice (or, and, xor, etc.).

● Edge, along with subclasses Bond and DigitalWire.

● BrokenGraph -- responsible for a graph fragment after crossover splits a graph.

● BrokenEdge -- responsible for an edge broken during splitting.

● VertexProvider and EdgeProvider -- these classes are used during graph
generation and mutation to provide random vertices and edges of various types.

In addition, there are several convenience classes:

● Parameters, along with subclasses MoleculeParameters and
DigitalLogicParameters. These objects hold all the values that are typically
varied from job to job; for example: population size, maximum number of
generations, fitness function, etc. Most of the JavaGenes class files are kept in a
jar file, but the parameter files are compiled for each set of jobs and placed
earlier in the CLASSPATH. This provides a flexible mechanism (taking
advantage of Java dynamic loading) to set input parameters without writing an
input file parser.

● InputTokenizer and OutputTokenizer -- these are used to save and restore state.
They can read and write integers, doubles, etc.

Free Code

A certain amount of Java code is available for free on the Web. We took advantage of
this in two cases. First, the Student T-Test code used in the statistics class was
supplied by NWP Associates, Inc. This was a minor, but helpful, convenience. Second,
and more important, one must examine the evolved graphs to understand the results.
To examine a graph, it must be laid out in two or three dimensions for viewing. In other
words, xyz locations for each vertex must be chosen. The graph layout problem is non-
trivial. In fact, it is very difficult. Fortunately, Daniel Tunkelang made his Jiggle Java
code [Tunkelang 1998] available, and Jiggle has done an excellent job of laying out

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-006.html (5 of 13)10/22/2004 2:14:39 AM

Condor: Cycle-Scavenging Genetic Algorithms

graphs evolved by JavaGenes. Integration of the two packages was quick and easy.
Only one bug was found in Jiggle (1615 lines of source). That bug was an infinite loop,
which was found and fixed in a little over an hour.

Development Environment

JavaGenes was developed on a Compaq laptop running Windows 95. Windows was
used because the main developer cannot type for significant lengths of time and uses a
voice recognition system. The first development environment was Visual Cafe. This was
abandoned because the debugger was quite buggy. The second development
environment was Supercede. Various problems required periodic re-installation, which
in turn caused serious problems with Windows 95. Finally, Borland JBuilder was tried
and there have been relatively few problems. CodeWarrior was used occasionally for
specific debugging problems. Although some compilers are a bit pickier than others, no
significant problems were encountered moving the code from one development
environment to another; or moving the source or class files to the SGI version of the
JDK to run experiments.

Condor Support for Java

Condor runs each job in an environment called a "universe." The two most important
universes are called "Standard" and "Vanilla." Standard jobs are programs that have
been linked with a special Condor version of the C runtime library that mimics the
effects of most UNIX system calls and adds two kinds of enhanced functionality: remote
system calls and checkpointing.

Remote system calls provide a uniform environment to a job running on any workstation
on a network. The Condor runtime library replaces system calls with remote procedure
calls to a shadow process running on the workstation that submitted the job. The
shadow makes the system call on behalf of the remote process and returns the results.
For example, the open system call sends the name of the desired file to the shadow,
which searches for it on the submitter's home workstation. Subsequent read and write
calls access that file over the network. The result is that the job sees the same file-
system environment regardless of where it runs, and all file output is captured in files on
the submitting workstation.

Checkpointing is also implemented by the Condor runtime library. Each Condor job is
run under the control of a starter process. When a workstation needs to be appropriated
for another purpose, the starter sends a terminate signal to the application process. The
Condor library catches this signal and sends a complete dump of the state of the
process back to the submitting machine, where it awaits its turn to be restarted on
another worker machine. This checkpoint file includes a binary dump of the entire virtual
memory image of the process. It also includes a record (collected by the remote system
calls) of the current state of the process' interaction with the operating system kernel.
For example, for each file opened by the job, the checkpoint file records the name of the
file and the current offset within the file (the "seek pointer"). Condor can also be
instructed to send a "checkpoint" signal to the starter at periodic intervals. The starter
responds to this signal by suspending the application, checkpointing it, and then
allowing it to continue. Under some circumstances, Condor may send other signals to
the starter, asking it to suspend the application, resume it, or kill it without giving it a
chance to checkpoint.

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-006.html (6 of 13)10/22/2004 2:14:39 AM

Condor: Cycle-Scavenging Genetic Algorithms

Neither remote system calls nor checkpointing require any source-level modifications to
the application program, but they do require it to be re-linked with a special version of
the system libraries. They also impose some restrictions on the set of system services
available to the job. In particular, Condor does not currently support Standard jobs that
use kernel-level threads. Programs that cannot be re-linked or that do not meet these
requirements must be run in the Vanilla universe. An arbitrary executable program can
be run as a Vanilla job, but any I/O operations will access the file system of whatever
machine the job happens to be running on, and if the workstation is pre-empted (for
example, by an interactive user), the job is simply killed and restarted from the
beginning on another workstation. At NAS, in general, Condor jobs do not have
permission to use the local disk on the worker workstation.

Most of the JavaGenes runs described in this paper used the Vanilla universe. The
Java Virtual Machine (JVM) from SGI and Sun was available to us only in binary (pre-
linked) form. We tried the Kaffe open-source JVM, but found that it had bugs that
prevented us from running JavaGenes correctly for more than a few generations.
Moreover, both JVM's use certain facilities -- notably kernel-level threads -- that are not
supported in Condor Standard jobs. Fortunately, the remote system call facility was not
necessary in our environment, since we use the Network File System (NFS), which
provides a uniform interface to files from all workstations. In this environment, the "job"
submitted to Condor is a tcl script that calls the JVM, with the name of the application
class supplied as a command-line argument. From the point of view of the JVM, the
class files that constitute the application are simply data files that appear to be on the
local disk of the worker machine through the magic of NFS. Similarly, NFS is used to
create output files on the submitting workstation.

The lack of automatic checkpointing was a more serious problem. As mentioned earlier,
we tried two different application-specific checkpointing strategies. Both involved
periodically invoking a checkpoint method that saves the state of the computation into a
file. JavaGenes invokes this method after each new child is created. If a workstation is
preempted before the program finishes, it is killed and restarted "from the beginning."
However, at startup, JavaGenes jobs look for a checkpoint file (via NFS) so they can
initialize state and continue from the last checkpoint. Thus, a job that is killed and
restarted loses only the work it did between its most recent checkpoint and the time it
was killed.

To provide better support for JavaGenes and other Java Grande applications, the
Condor project has been developing a Java universe. To run under this
universe, a Java program must implement the Checkpointable interface:

 public interface Checkpointable extends Serializable {
 void start(String[] arguments);
 void restart();
 void beforeCheckpoint();
 void afterCheckpoint();
 void setCheckpointer(Checkpointer c);
 }

Each universe has its own kind of starter. The starter for the Java universe is written in
Java and extends java.lang.ClassLoader. A "job" in the Java universe is a class
file. We assume that each worker machine has a JVM installed locally, but otherwise do
not require any network file system or uniform file environment. The Java starter loads

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-006.html (7 of 13)10/22/2004 2:14:39 AM

Condor: Cycle-Scavenging Genetic Algorithms

all required classes over the network by communicating with a Java version of the
shadow using the Java RMI (Remote Method Invocation) interface. The Java starter
creates an instance prog of the application program class and calls either prog.start
() or prog.restart(), depending on whether there is an existing checkpoint file
from an earlier run of this job. The starter also creates an instance cp of a Checkpointer
object, passing prog to its constructor, and calling prog.setCheckpointer(cp) so
that prog and cp can refer to each other. Prog can also access cp through static
methods in Checkpointer as long as there is only one instance of Checkpointer. When
the starter receives a terminate or checkpoint signal, it calls cp.
checkpointWhenPossible(), which sets a flag indicating that a checkpoint has
been requested. It does not force an immediate checkpoint because the application
object may not be in a "quiescent" state in which checkpointing is convenient. The
application itself is expected to call cp.ok() periodically. If no checkpoint has been
requested, this method simply returns without doing anything. However, if a checkpoint
request is pending, the checkpointer uses Java serialization to save the state of the
object by calling writeObject(prog). It also calls prog.beforeCheckpoint()
before the checkpoint and prog.afterCheckpoint() after.

The writeObject method saves all of the non-transient fields of the object, as well as
all objects pointed to by those fields, all fields of those objects, etc. It does not,
however, save anything from the runtime stack -- that is, the values of local variables. It
is the responsibility of the application to update the non-transient fields of the
application object to reflect the complete state of the application either before calling
cp.ok or in the method beforeCheckpoint. If these updates are costly, they should
be in beforeCheckpoint because this method is only called if the checkpoint is
actually performed. The beforeCheckpoint and afterCheckpoint methods also
provide hooks for application-specific performance monitoring, such as determining the
amount of time spent checkpointing. A typical application might look like this:

 class Application implements Checkpointable {
 private Checkpointer checkpoint;
 private GlobalState state;
 private int lastStepCompleted;
 private transient Vector intermediateResults;
 private int iterations; // set by initializeState
 private PerformanceStatistics statistics;
 public void setCheckpointer(Checkpointer checkpoint) {
 this.checkpoint = checkpoint;
 }
 public void start(String[] args) {
 state.initialize(args);
 intermediateResults = new Vector();
 iterateFrom(0);
 }
 public void restart() {
 intermediateResults = new Vector();
 state.restore(intermediateResults);
 iterateFrom(lastStepCompleted);
 }
 private void iterateFrom(int start) {
 for (int i = start; i < iterations; i++) {

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-006.html (8 of 13)10/22/2004 2:14:39 AM

Condor: Cycle-Scavenging Genetic Algorithms

 intermediateResults.add(oneStepOfAlgorithm());
 lastStepCompleted = i;
 checkpoint.ok();
 }
 printResults();
 }
 public void beforeCheckpoint() {
 statistics.startTimer();
 state.update(intermediateResults):
 }
 public void afterCheckpoint() {
 statistics.stopTimer();
 }
 // Methods initializeState, oneStepOfAlgorithm,
 // startTimer, etc. omitted for brevity.
 }

The Java universe provides several advantages over the Vanilla universe for Java
applications:

● It supports remote system calls, so that it does not depend on the availability of a
network file system (and uniform conventions for mount points).

● It automates more of the tasks necessary for checkpointing and recovery.

● It allows Condor to decide when to checkpoint a job, only requiring the
application code to indicate when a checkpoint is safe.

● It allows a job to migrate among hardware platforms during its lifetime. A job in
the Java universe is comprised of class files and a checkpoint file, all of which
are platform-independent.

A prototype version of the Java universe successfully ran JavaGenes but it was not
stable enough for production use at the time the experiments described in this paper
were run. Also, the Java universe uses Java serialization to checkpoint jobs. Our
experience indicates that standard Java serialization is too slow for JavaGenes to use.

Results

The bottom line for JavaGenes on Condor was to run many jobs to conduct the
experiments necessary to start understanding the application of genetic algorithms to
graphs. In this, we were successful. Thousands of jobs were successfully run, one
genetic algorithm paper was published [Globus, et al. 1999], and another is in
preparation [Globus, et al. 2000]. JavaGenes does a fairly good job of evolving
pharmaceutical drug molecules, but can only evolve trivial circuits so far. We now
examine the pros and cons of using Java for our application.

Java Con

Java Serialization Performance

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-006.html (9 of 13)10/22/2004 2:14:39 AM

Condor: Cycle-Scavenging Genetic Algorithms

It was discovered that creating serialization files and reading them to implement
checkpoint/restart could take as much as three hours wall clock time. Although Java
serialization is extremely general-purpose, any object can be serialized and the format
is CPU independent, it is difficult to understand why three hours is needed to serialize a
few hundred graphs, some ancillary objects, and a few thousand real numbers (the
data). In any case, jobs under these conditions made no progress. In addition, the
serialization files were around 25 MB and there were often two files per job. Because
jobs could be interrupted in the middle of serialization, JavaGenes wrote state
information into a temporary file and, when finished, moved it to the permanent location.
With long serialization times, most jobs were interrupted in the middle of writing the
serialization file. Thus, the full checkpoint file and a partial checkpoint file were on disk
most of the time. With hundreds of jobs, disk usage became substantial. To solve the
performance problem, Java serialization was abandoned and new code written to save
the state of the computation and read it back from disk. Development took
approximately two days and one bug was found and fixed a few days after development
was "complete." Most checkpoint files are now less than 1 MB. Checkpoint write and
read usually take around 10 seconds, but can require up to about five minutes
(including network delays). This was the only performance problem that required
changes to the code.

Checkpointing with Serialization

Besides having performance problems, checkpointing with serialization must be
handled with care. In particular, it is sometimes error prone. It is essential to make sure
that all of the necessary program state is saved. In the case of genetic algorithms,
nearly all the state that must be saved is contained in the population. However, if
checkpointing is allowed in the middle of constructing a new generation, then the loop
index indicating how much of the next generation has been constructed must also be
saved. Also, it is difficult to write code that can be interrupted at any time and saved to
disk. Therefore, checkpointing is restricted to those points in the code where analysis
can prove that saving and restoring will not cause problems.

One other fairly serious problem arose. In the initial implementation, JavaGenes started
a new random number generator after restart. Because of this, evolution did not follow
the same path taken after the last checkpoint. In other words, the genetic algorithm was
controlled by different random numbers and therefore searched a different part of the
search space. That made the algorithm appear more efficient than it was, because the
number of generations to find a specific target was used as the efficiency measure.
Consider the case where a job ran for 100 generations up to a checkpoint and 20 more
generations before being killed. When the job was restarted, 20 different generations
would be constructed and one of the new generations, say the 10th, might find the
target. Therefore, it would appear as if the target was found in 110 generations, but
actually 130 were tried. Thus, jobs might repeatedly search the region around the last
checkpoint and stop if a solution were found, reporting an inaccurately small number of
generations to completion. It was therefore necessary, at job restart time, to restart the
random number generator with the same seed and then execute the random number
generator the number of times it was executed up to the last checkpoint. This should
have insured that a job would follow the same evolutionary path regardless of
checkpoint history. Unfortunately, although this fix worked properly when a job was
restarted on the same machine, different results were observed in normal execution on
the Condor pool, where jobs frequently move between machines. These changing
evolutionary paths were presumably caused by differences in the Java libraries on

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-006.html (10 of 13)10/22/2004 2:14:39 AM

Condor: Cycle-Scavenging Genetic Algorithms

different versions of the SGI operating system. This may change the order of certain
lists in JavaGenes and cause the same random number to pick different items from
these lists. Fortunately, only about 6% of the generations were repeated once
checkpointing performance was improved, suggesting that the effect was fairly minor.
Because checkpointing was fast, computations would usually proceed to the next
checkpoint before being restarted.

JIT Essential

Some very simple tests indicated that jobs run under the SGI just-in-time compiler were
approximately 20 times faster than when the JIT was disabled.

Double Read/Write Java Libraries Bug

It was discovered that the standard Java libraries will write out certain double numbers
in an ASCII form that is not tolerated as input by the same libraries. In particular,
System.out.write("" + aDouble) will write out values such as NaN and
Infinity, but Double(String) will throw an exception if these strings are passed
as the argument.

Java Pro

Porting

We never had any problems porting the source or class files between Java
environments.

Bugs

Compared to developing in C or C++, there were few bugs and they were easy to find
and fix. Basically, almost all the bugs were logic problems, most of which were found
and fixed while single stepping through the code with the graphical debuggers provided
by the IDEs. The uncontrolled pointers, index out of range, memory management, and
similar bugs extremely common in the primary programmer's 20 year C and C++
development experience almost never occurred. These bugs are also, usually, quite
difficult to find. Reducing the number of bugs dramatically lowered development time, at
least subjectively.

Memory Management

Memory management was trivial. Only one bug was encountered when we neglected to
create a new xyz array in class Vertex during cloning. Before the bug was fixed,
after graph layout, all the atoms were displayed at a single point.

Performance

Other than the serialization problem, performance was not a major issue. This was, in
part, because Condor supplies us with lots of nearly free CPU cycles, but also because
Java performance has been reasonable (although certainly not exceptional).

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-006.html (11 of 13)10/22/2004 2:14:39 AM

Condor: Cycle-Scavenging Genetic Algorithms

In short, we were happy with Java for this application. While there is some run-time
penalty, more rapid code development and more reliable end-product software is well
worth the extra CPU cycles. Since cycles are always getting cheaper, and programmers
and support staff seem to be getting more expensive, we expect Java to do well in the
coming years.

Future Work

The main task before JavaGenes is to incorporate more chemical knowledge into the
fitness functions, because JavaGenes usually evolves molecules that are not
physiologically stable and that would be difficult, or perhaps impossible, to synthesize.
To support more Java applications under Condor and more diverse environments, the
prototype Condor Java universe described in the section on Condor Support for Java
needs to be brought up to production status. The performance problem with Java
serialization needs to be solved more generally, or applications must reimplement
serialization. An alternative approach would be to rebuild a Java Virtual Machine as a
Standard universe job. This approach has the advantage of requiring less hand-
modification of Java applications, but requires resolution of certain technical and
licensing issues.

Acknowledgments

Many thanks to Daniel Tunkelang, formerly of Carnegie Mellon, for providing his graph
layout code [Tunkelang 1998]. Thanks to NWP Associates, Inc. for providing their
Student T-Test code. Thanks to Rich McClellan, University of California at Santa Cruz,
for providing the mol file reading and atomic element code. Thanks to Gail Felchle for
much of the graphics art work. Thanks to the Condor team at the University of
Wisconsin for their support. Thanks to Chris Henze and Bonnie Klein for reviewing this
paper. This work was funded by NASA Ames contract NAS 2-14303 and NASA-Ames
Cooperative Agreement No. NCC 2-5323.

References

[Baeck, et al. 1997] Thomas Baeck, Ulrich Hammel, and Hans-Paul Schwefel,
"Evolutionary Computation: Comments on the History and Current State," IEEE
Transactions on Evolutionary Computation, volume 1, number 1, pages 3-17, April
1997.

[Carhart, et al. 1985] Raymond Carhart, Dennis H. Smith, and R. Venkataraghavan,
"Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and
Application," Journal of Chemical Information and Computer Science, volume 23, pages
64-73.

[Globus, et al. 1999] Al Globus, John Lawton, and Todd Wipke, "Automatic Molecular
Design Using Evolutionary Techniques," Sixth Foresight Conference on Molecular
Nanotechnology, Sunnyvale, California, November 1998 and Nanotechnology, volume
10, number 3, September 1999, pages 290-299.

[Globus, et al. 2000] Al Globus, Sean Atsatt, John Lawton, and Todd Wipke,
"JavaGenes: Evolving Graphs with Crossover," in preparation.

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-006.html (12 of 13)10/22/2004 2:14:39 AM

http://science.nas.nasa.gov/~globus/papers/Nanotechnology98/paper.html
http://www.foresight.org/Conferences/MNT6
http://www.foresight.org/Conferences/MNT6

Condor: Cycle-Scavenging Genetic Algorithms

[Holland 1975] John H. Holland, Adaptation in Natural and Artificial Systems, University
of Michigan Press.

[Koza 1992] John R. Koza, Genetic Programming: on the Programming of Computers
by Means of Natural Selection, MIT Press, Massachusetts.

[Litzkow, et al. 1988] M. Litzkow, M. Livny, and M. W. Mutka, "Condor - a Hunter of Idle
Workstations,'' Proceedings of the 8th International Conference of Distributed
Computing Systems, pages 104-111, June1988. See http://www.cs.wisc.edu/condor/.

[Livny and Raman 1999] M. Livny and R. Raman, "High Throughput Resource
Management," Computational Grids: The Future of High-Performance Distributed
Computing, edited by Ian Foster and Carl Kesselman, published by Morgan Kaufmann,
1999.

[Lohn and Colombano 1998] Jason D. Lohn and Silvano P. Colombano, "Automated
Analog Circuit Synthesis Using a Linear Representation,'' Second International
Conference on Evolvable Systems: From Biology to Hardware, Springer-Verlag, 23-25
September 1998.

[NAS] http://www.nas.nasa.gov/home.html.

[Tunkelang 1998] Daniel Tunkelang, A Numerical Optimization Approach to Graph
Drawing, Dissertation, Carnegie Mellon University, School of Computer Science,
December 1998.

[Wims and Xu 1999] Brian Wims and Cheng-Zhong Xu, "Traveler: A Mobile Agent
Infrastructure for Wide Area Parallel Computing," ACM 1999 Java Grande Conference,
San Francisco, California, 12-14 June 1999.

[Xiao, et al. 1997] Jiang Xiao, Zbigniew Michalewicz, Lixin Zhang, and Krzysztof
Trojanowski, "Adaptive Evolutionary Planner/Navigator for Mobile Robots," IEEE
Transactions on Evolutionary Computation, volume 1, number 1, pages 18-28, April
1997.

Curator: Jill Dunbar Last Update: March 29, 2000

NASA Official: Walt Brooks

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-006.html (13 of 13)10/22/2004 2:14:39 AM

http://www.cs.wisc.edu/condor/
http://www.nas.nasa.gov/home.html
http://reports-archive.adm.cs.cmu.edu/anon/1998/abstracts/98-189.html
http://reports-archive.adm.cs.cmu.edu/anon/1998/abstracts/98-189.html
http://www.cs.ucsb.edu/conferences/java99
http://www.nas.nasa.gov/~jdunbar
mailto:wbrooks@mail.arc.nasa.gov

	nasa.gov
	Condor: Cycle-Scavenging Genetic Algorithms

